top of page
Rechercher
  • Photo du rédacteurHerve Blanc

L’IA Générative, une révolution en marche ?

Dernière mise à jour : 16 avr.


éoliennes, électricité

L'IA est souvent comparée à l'électricité. Andrew NG affirmait que « Tout comme l'électricité a presque tout transformé il y a 100 ans, aujourd'hui, j'ai du mal à penser à une industrie que l'IA ne transformera pas au cours des prochaines années. »

L’IA Generative, une sous branche de l’IA, rajoute une corde très puissante à l’arc déjà bien fourni des possibilités de l’intelligence artificielle. Le phénomène IA ne fait qu’accélérer.


L’IA Générative a créé de nouvelles opportunités et cas d’usages


L'IA Générative se déploie extrêmement vite. ChatGPT a montré la voie et le LLMs sont là pour contribuer à des gains de productivité importants. Dans cet article de blog, je parle de la façon dont l'interaction en langage naturel est maintenant une réalité, et la réponse aux questions des clients est un cas d'utilisation prédominant pour cette technologie. La traduction, le résumé et la génération de contenus sont également d'autres cas d'utilisation très intéressants.

Pour en savoir plus il faut lire cas d'usage de l'IA générative.


Les fondements de la technologie à la base du succès de ChatGPT.


RLHF est la "sauce secrète" de ChatGPT. C'est certainement l'un des fondements de la réussite d'OpenAI.

Comment l’utiliser avec vos données confidentielles

ChatGPT fourni des réponses inexactes si vous demandez quelque chose lié à votre entreprise ou vos produits. Bien sûr, vos informations propriétaires ne faisaient pas parti de son jeu de données d’entrainement.

Les alternatives open source

OpenAI nous a fait croire avec ChatGTP que « plus de paramètres c’était mieux ». La communauté IA open source a pris une approche différente et a montré que plus de données, et la formation avec moins de jetons par paramètre était une solution pour réduire votre coût d’inférence, tout en maintenant les performances. Les modèles d’IA open source qui en résultent peuvent être affinés avec les documents propriétaires des entreprises, apportant des alternatives aux coûts d’inférence payant par jeton.

Un éclairage sur les capacités émergentes des LLMs

Il y a eu une idée répandue selon laquelle ajouter des milliards de paramètres aux LLMs comme ChatGPT pourrait leur permettre de voir émerger de nouveaux comportements. Cependant, une nouvelle étude de l’Université de Stanford montre que ces aptitudes sont bien présentes à plus petite échelle et qu’elles peuvent être mesurées avec les bonnes métriques.

Un guide de réglage fin de ces grands modèles de langage


Suivant l’application visée, vous pouvez être amené à devoir entrainer votre propre model de langage.

Comments


bottom of page